#### **ANAFI**



# Validation experiences in Italian Holstein Genomic Selection

Jan-Thijs van Kaam

# Holstein bull genotypes available May 2010



- Reference population: Italian proven bulls and their (grand)sires.
- Genotypes: 54.001 Illumina SNPs.
- 80% oldest bulls used for estimation, 20% youngest used for validation.

|                         | Genotyped samples |
|-------------------------|-------------------|
| Total genotypes         | 3032              |
| Replicates              | - 86              |
| Unique bulls            | 2946              |
| Removed in data editing | - 50              |
| Left after data editing | 2896              |
| Young bulls             | - 307             |
| Proven bulls (kg milk)  | 2589              |

#### Preparation of genotype data



#### Selection of samples:

- Free of known identity errors
- Merge (if matching) or reject (if not matching) replicate samples
- Selection of SNPs by removing SNPs with undesirable characteristics:
  - Unscorable (i.e. many missing genotypes)
  - Monomorphic
  - Not mapped
  - Low minor allele frequency (MAF)
  - Low minor genotype frequency (MGF) (Low MGF doesn't always imply low MAF)
  - Large deviation from Hardy-Weinberg equilibrium
  - Highly correlated with other SNPs
  - Non-autosomal

## SNP selection



| SNP selection criteria    | Flag per criteria | Flag only for this criteria |  |  |  |
|---------------------------|-------------------|-----------------------------|--|--|--|
| Monomorphic               | 3464              | 0                           |  |  |  |
| Non-autosomal or unmapped | 1491              | 376                         |  |  |  |
| % Missing                 | 1344              | 588                         |  |  |  |
| Mendelian                 | 1328              | 44                          |  |  |  |
| Minor Genotype Frequency  | 10834             | 793                         |  |  |  |
| Minor Allele Frequency    | 9280              | 43                          |  |  |  |
| Hardy-Weinberg            | 3477              | 566                         |  |  |  |
| Correlation               | 9331              | 1299                        |  |  |  |
| X-linked                  | 1178              | 81                          |  |  |  |
| Any flags / No flags      | 14757             | 39244                       |  |  |  |

- Very little difference between more lax and more stringent SNP selection.
- 'Bad' SNPs have more false positive AND false negative associations.

#### Estimation of SNP effects



- SNP effects estimated using a single trait genomic BLUP approach based on a preconditioned conjugate gradient algorithm with residual updating.
- Speed: 29 single traits in 10 minutes total.
- Direct Genomic Value as sum of SNP effects.
- Composite traits are composed based on single trait results.
- Might add Gibbs sampling to get individual reliabilities based on posterior distribution.

### Validation system



- Use oldest bulls for training with EDPs from 3 years ago.
- Check if the SNP effects predicted with the training bulls are capable to predict the realized EDPs of the youngest bulls.

EDP = Effective Daughter Performance (Deregressed EBV)

#### Validation criteria



#### 1. The regression coefficient b for

- $EDP_{2010} = a + b * DGV_{2007}$
- b should be close to 1 (Interbull)
- b <1 with selective genotyping (VanRaden)</p>
- The increase in R<sup>2</sup>, i.e. effective daughter contributions, from DNA info:
  - $EDP_{2010} = a + b * Pl_{2007}$
  - $\blacksquare EDP_{2010} = a + b_1 * Pl_{2007} + b_2 * DGV_{2007}$

EDP = Effective Daughter Performance (Deregressed EBV),

DGV = Direct Genomic Value, PI = Pedigree Index

#### Regression of EDP on DGV



- EDP, EBV and DGV are all estimates of TBV.
- EDP are EBV but deregressed.
- It is suggested that regression of EDP on DGV should have a regression coefficient close to 1.
- In reality when regressing EDP on DGV the regression coefficients were around 0.60. Probably this will increase when more bull genotypes will be available.
- SNP coefficient and variance both determine size of SNP effect. Increasing Ve/Vm increases the b coefficient, and hence one can get to the desired value.
- Vm = Vg/sum(2pq)

# Effect of variance ratio Ve/Vm



|        | Bulls    | REL  | REL  |      |      | a+b*DGV |      | a+b*PI a+b1*PI+b2*DGV |      |      | +b2*DGV   |
|--------|----------|------|------|------|------|---------|------|-----------------------|------|------|-----------|
| Trait  | Pred Val | PI   | GEBV | EDCg | h2   | b       | R2   | b                     | R2   | R2   | Gamma     |
| kg fat | 1945 431 | 33.4 | 47.6 | 5.2  | 0.29 | 0.63    | 0.24 | 0.67                  | 0.13 | 0.25 | 0.5*Ve/Vm |
| kg fat | 1945 431 | 33.4 | 47.6 | 5.2  | 0.29 | 0.72    | 0.24 | 0.67                  | 0.13 | 0.25 | 2.0*Ve/Vm |
| kg fat | 1945 431 | 33.4 | 46.7 | 4.8  | 0.29 | 0.83    | 0.23 | 0.67                  | 0.13 | 0.24 | 5.0*Ve/Vm |
| kg fat | 1945 431 | 33.4 | 45.4 | 4.2  | 0.29 | 0.95    | 0.22 | 0.67                  | 0.13 | 0.23 | 10.*Ve/Vm |
|        |          |      |      |      |      |         |      |                       |      |      |           |
| % fat  | 1942 426 | 33.4 | 65.9 | 10.0 | 0.50 | 0.87    | 0.43 | 0.73                  | 0.15 | 0.43 | 0.5*Ve/Vm |
| % fat  | 1942 426 | 33.4 | 65.2 | 9.6  | 0.50 | 0.98    | 0.42 | 0.73                  | 0.15 | 0.42 | 2.0*Ve/Vm |
| % fat  | 1942 426 | 33.4 | 62.3 | 8.1  | 0.50 | 1.10    | 0.40 | 0.73                  | 0.15 | 0.40 | 5.0*Ve/Vm |
| % fat  | 1942 426 | 33.4 | 58.4 | 6.3  | 0.50 | 1.22    | 0.36 | 0.73                  | 0.15 | 0.36 | 10.*Ve/Vm |
|        |          |      |      |      |      |         |      |                       |      |      |           |
| % prot | 1942 426 | 33.4 | 55.4 | 5.2  | 0.50 | 0.79    | 0.37 | 0.87                  | 0.20 | 0.39 | 0.5*Ve/Vm |
| % prot | 1942 426 | 33.4 | 55.0 | 5.0  | 0.50 | 0.90    | 0.37 | 0.87                  | 0.20 | 0.38 | 2.0*Ve/Vm |
| % prot | 1942 426 | 33.4 | 53.8 | 4.6  | 0.50 | 1.03    | 0.36 | 0.87                  | 0.20 | 0.37 | 5.0*Ve/Vm |
| % prot | 1942 426 | 33.4 | 52.2 | 4.1  | 0.50 | 1.18    | 0.35 | 0.87                  | 0.20 | 0.36 | 10.*Ve/Vm |
|        |          |      |      |      |      |         |      |                       |      |      |           |
| fert   | 1666 420 | 31.1 | 44.9 | 28.7 | 0.05 | 0.67    | 0.13 | 0.73                  | 0.08 | 0.14 | 0.5*Ve/Vm |
| fert   | 1666 420 | 31.1 | 44.3 | 27.0 | 0.05 | 0.95    | 0.13 | 0.73                  | 0.08 | 0.14 | 2.0*Ve/Vm |
| fert   | 1666 420 | 31.1 | 41.3 | 20.0 | 0.05 | 1.19    | 0.12 | 0.73                  | 0.08 | 0.13 | 5.0*Ve/Vm |
| fert   | 1666 420 | 31.1 | 38.5 | 13.6 | 0.05 | 1.43    | 0.11 | 0.73                  | 0.08 | 0.11 | 10.*Ve/Vm |
|        |          |      |      |      |      |         |      |                       |      |      |           |

#### What does R<sup>2</sup> mean?



- While moving from 38416 SNPs to 43385 SNPs, USDA gained 0.4% reliability on average across traits. (Wiggans, 2010)
- Did they actually gain when they add 5000 parameters and hardly increase the reliability?
- R<sup>2</sup> will go to 1 also if one adds a million random variables to a model!
- Fitted variance + 'Explained' variance
- Some sort of information criterion needed which accounts for the number of parameters/SNPs.

#### North American blending



- GEBV =  $w_1*PA + w_2*subset-PA + w_3*DGV$
- Weights based on reliabilities
- Subset-PA based on A matrix with only the genotyped ancestors. Added because genotypes are only available on a subset of sires and grandsires.

GEBV = Genome Enhanced Breeding Value, PA = Parental Average

#### How to blend?



- GEBV = (EDCc\*EBV + EDCg\*DGV)/(EDCc+EDCg)
- Should variances of conventional index and Direct Genomic Value be the same?
- Or should they differ based on level of reliability?
- What is best to present?

**EDCc = Conventional Effective Daughter Contributions** 

EDCg = Genomic Effective Daughter Contributions

#### Conclusions



- The R<sup>2</sup> depends mostly on the number of genotypes available.
- More stringent or lax selection of SNPs had a minimal effect on R<sup>2</sup>.
- Increasing the variance ratio, i.e. reducing the marker variance, increases the b-value, while R<sup>2</sup> remains nearly equal.

#### End



- Thank you for your attention.
- Questions?
- Acknowledgement:

 Thanks to all organizations, projects and persons involved.